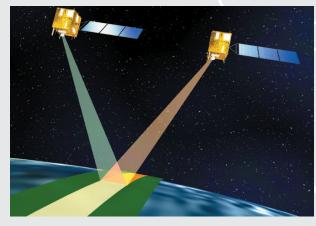
O SATÉLITE

Os satélites da família CBERS são compostos de dois módulos. O módulo de Carga Útil acomoda os equipamentos ópticos e eletrônicos utilizados para a observação da Terra e a coleta de dados. O módulo de Serviço contém os equipamentos que asseguram o suprimento de energia, as telecomunicações e demais funções necessárias à operação e manutenção do satélite em órbita.

Características	CBERS-1 e 2	CBERS 2B	CBERS-3 e 4
Massa total	1450 kg	1450 kg	2000 kg (máx.)
Potência gerada	1100 W	1100 W	1500 W (mín.)
Dimensões do corpo	1,8 X 2 X 2,2 m	1,8 X 2 X 2,2 m	1,8 X 2 X 2,5 m
Dimensões do painel	6,3 X 2,6 m	6,3 X 2,6 m	6,3 X 2,6 m
Altitude da órbita heliossíncrona	778 km	778 km	778 km
Propulsão	hidrazina	hidrazina	hidrazina
Tempo de vida (confiabilidade de 0,6)	2 anos	2 anos	3 anos
Estabilização	3 eixos	3 eixos	3 eixos
TT&C bandas	UHF, VHF e S	UHF, VHF e S	s

ÓRBITA


A órbita do CBERS é heliossíncrona, com uma altitude de 778 km, perfazendo cerca de 14 revoluções por dia. A cada 26 dias inicia-se um novo ciclo global de imageamento. Nessa órbita, o satélite cruza o Equador sempre à mesma hora local, 10h30, permitindo assim a obtenção das mesmas condições de iluminação solar durante a aquisição de imagens.

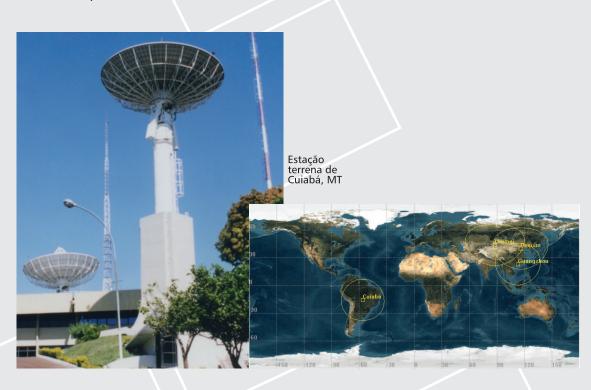
A capacidade de apontamento lateral da câmera PAN, aliada ao tipo de órbita

do satélite, torna possível a obtenção de pares estereoscópicos de uma dada região, com intervalo de até três dias entre as duas imagens.

O PROGRAMA CBERS

Brasil e China possuem extensões continentais, com amplos recursos naturais e vastas regiões remotas, que sofrem contínuas transformações.

O monitoramento desses recursos e o acompanhamento da evolução dessas transformações, tanto as naturais quanto aquelas causadas pela ação do homem, são realizados com maior eficiência e economia quando a observação do território é feita a partir do espaço.


Em 6 de julho de 1988, os dois países iniciaram um programa de cooperação para desenvolver satélites de sensoriamento remoto – um esforço conjunto para capacitação na área de Observação da Terra. Esse programa é denominado Satélite Sino-Brasileiro de Recursos Terrestres (China-Brazil Earth Resources Satellite) ou CBERS. De cinco satélites planejados, três já foram lançados.

O CBERS-1, lançado em 14/10/1999 a partir do Centro de Lançamentos de Satélites de Tayuan, China, produziu, ao longo de seus quatro anos de vida, uma valiosa coleção de imagens dos territórios brasileiro e chinês. O segundo satélite, o CBERS-2, foi lançado em 21/10/2003 da mesma base chinesa e substituiu a operação do CBERS-1. Em 19/09/2007, foi lançado o CBERS-2B, o segundo totalmente integrado e testado no INPE.

O acordo entre o Brasil e a China prevê ainda o lançamento do CBERS-3 em 2013 e do CBERS-4 em 2014.

ESTAÇÕES DE RECEPÇÃO

As imagens do CBERS são recebidas no Brasil pela estação terrena de Cuiabá (MT), cuja área de abrangência inclui todo o Brasil e partes da Bolívia, Uruguai, Paraguai, Guianas, Argentina, Peru, Colômbia, Venezuela e Chile. O Catálogo de Imagens CBERS, disponível gratuitamente na Internet, inclui imagens de todos esses países. A China tem três estações de recepção para o CBERS. Também é objetivo do Programa CBERS ter uma rede de estações que cubra a África, permitindo que os países desse continente tenham acesso gratuito a dados de satélites (*CBERS for Africa*).

O Brasil Visto do Espaço

O CBERS-3 e o CBERS-4 estão equipados com um novo e sofisticado conjunto de câmeras em relação aos CBERS-1, 2 e 2B. A seguir, detalhes das câmeras imageadoras.

IMAGEADOR DE AMPLO CAMPO DE VISADA (WFI)

Proporciona imagens de extensas faixas da superfície do globo, permitindo uma visão integrada de formações geográficas de grande extensão, como grandes rios e regiões costeiras. No CBERS-1, CBERS-2 e CBERS-2B, a câmera WFI produzia imagens de uma faixa com 890 km de largura, com resolução espacial de 260 m. Nos CBERS-3 e CBERS-4, essa câmera produzirá imagens de uma faixa de 866 km, com resolução espacial de 64 m.

IMAGEADOR DE MÉDIA RESOLUÇÃO (MUX)

Permite o acompanhamento de fenômenos que exigem maior detalhamento para seu estudo, como processos de desmatamento e mapeamentos agrícolas. Fenômenos detectados pela câmera WFI podem ser registrados pela câmera MUX para estudo mais detalhado. Nos CBERS-1, 2 e 2B, a câmera CCD produzia imagens de uma faixa com 113 km de largura, com resolução de 20 m. Nos CBERS-3 e 4, a resolução espacial será a mesma, com imagens numa faixa de 120 km de largura, desde o azul até o infravermelho próximo.

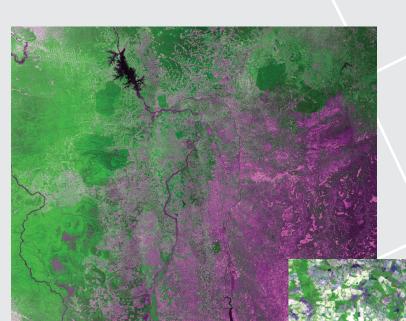


Imagem WFI/CBERS-2B sobre parte dos Estados do Pará, Maranhão e Tocantins, destacando-se a barragem de Tucurui, PA

Imagem IRMSS/CBERS-2 sobre a barragem de Itaipu, PR, nas divisas com Paraguai e Argentina

IMAGEADOR INFRAVERMELHO (IRS)

Permite a obtenção de imagens nas regiões do visível/infravermelho próximo (pancromática), infravermelho de ondas curtas e infravermelho termal. No CBERS-1 e CBERS-2, produzia imagens de uma faixa de 120 km de largura com resolução espacial de 80 m e 160 m (termal). Os CBERS-3 e CBERS-4 são equipados com uma câmera IRS mais evoluída, que produzirá imagens com resolução espacial 40 m e de 80 m (termal). No CBERS-2B esse imageador foi substituído por uma câmera experimental de alta resolução, mas retornou no CBERS-3 com melhor resolução.

IMAGEADOR DE ALTA RESOLUÇÃO (PAN)

Esta é uma nova câmera, que tem resolução espacial de 5 m no modo pancromático e de 10 m no modo multiespectral (do azul ao infravermelho próximo, em quatro bandas). Tem uma faixa de largura de imageamento de 60 km e capacidade de visada lateral, o que lhe permite fazer aquisições para composição de pares estereoscópicos. A visada lateral permite agilidade em situações que necessitem de imageamentos mais detalhados e em maior frequência temporal, como nos casos de desastres.

PARA ENTENDER

- Resolução espacial: a menor área do solo medida pelo sensor. Por exemplo, uma resolução de 10 metros indica que cada área de 10 m x 10 m no terreno será um elemento de imagem (pixel). Portanto, quanto melhor a resolução espacial de um sensor, melhor será o nível de detalhe observado.
- Área de cobertura: A cada órbita, cuja duração é de cerca de 100 minutos, o sistema (satélite e sensor) recobre uma faixa longitudinal e constante no terreno equivalente a certa faixa de terreno. Essa faixa de imageamento varia de acordo com o sensor (p.ex., 120 km no caso da MUX e 60 km no da PAN).

DIFUSÃO DE DADOS

Graças ao Programa CBERS, o Brasil é hoje um dos maiores distribuidores de imagens de satélite do mundo. Com a política de livre acesso a dados públicos implantada pelos governos brasileiro e chinês em 2004, o INPE distribui cerca de 700 imagens/dia a centenas de instituições do país, como secretarias municipais, estaduais e federais, universidades, ONGs, empresas etc. Com isso, há uma contribuição efetiva do CBERS para o monitoramento e estudo do nosso território e para a geração de empregos especializados.

A disponibilidade de dados CBERS de forma rápida e eficiente reduz o custo e o tempo dos projetos e permite que se desenvolvam novas aplicações de sensoriamento remoto no Brasil.

Usuários de imagens CBERS

- Órgãos públicos federais, estaduais e municipais (prefeituras; secretarias de Meio Ambiente, Fazenda, Agricultura, Educação, Saúde, Justiça etc.; EMBRAPA; Agência Nacional de Águas; IBAMA; IPT, entre outros)
- Empresas privadas
- Escolas nos diversos níveis
- Organizações Não-Governamentais (ONGs)
- Universidades públicas e privadas
- Estudantes

APLICAÇÕES

As imagens de satélites são fundamentais:

- Quando precisamos coletar, de forma rotineira e consistente, informações sobre a superfície da Terra mudanças globais, avaliação das florestas tropicais e estudos costeiros. O monitoramento de desflorestamento e queimadas, por exemplo, só pode ser realizado por meio de imagens de satélite. Adicionalmente, em função da extensão e incremento constante da área ocupada pelo setor do agronegócio brasileiro, o uso de imagens orbitais para obtenção de informações agrícolas é essencial.
- Quando precisamos obter informação de forma rápida sobre eventos cuja localização e ocorrência é de difícil previsão e/ou acesso desastres naturais (enchentes, por exemplo) ou produzidos pelo homem (queimadas, poluição causada por derramamento de óleo no mar), e ainda casos de reconhecimento militar (ações na fronteira).
- Quando precisamos de mapeamento cartográfico, as imagens de satélite podem substituir ou complementar os levantamentos aerofotogramétricos.